
Ancient Metallurgy and Early Sustainable Practices- Recycling and Resource Management

KID: 20250305 | Ms Nayanathara S, Prof Suhash Ranjan Dey

The three-age system is the most important chronological marker that we are still following, which was introduced by CJ Thomsen in the 19th century while he was curating the Copenhagen Museum. He followed a system where the artefacts are studied with the technological stages to which these belong and categorized as the Stone Age, Bronze Age and Iron Age. Introduction of metals and metallurgy into society brought out a tremendous transformation in human history, where people began to manipulate the environment, particularly Earth's raw materials, according to their needs. From making single metals to the technique of alloying of different raw materials like copper and tin to create bronze, insights about their technological advancements as well as their understanding of natural resources. The bronze artefacts found from Harappan settlements, which were one of the trademarks of its urbanization, the iron tools found from Gangetic valleys, which were the primary reason for the establishment of Janpadas and Mahajanpadas, and large-scale zinc production in Zawar, Rajasthan, all attest to the fact that metals transformed human life. From all these regional-specific metallurgical practices, it is evident that they mostly relied upon locally available ores, fuel, and techniques, and also were resource-sensitive and were against overutilization and exploitation.

Reuse and recycling have been a significant feature of ancient metallurgy, where archaeological sites give evidence of the melting and rejoining of tools and jewelry for varied purposes. This, in turn, reduces the need for fresh mining and points to the idea of a circular economy where the resources are utilized repeatedly, and by doing that, the life of these resources gets extended, and the wastes are also minimized.

In the ancient economy, the idea of fuel was also connected with nature and was utilizing charcoalbased smelting and forging. At the same time, they practiced controlled felling, woodland management and copping in order to give the environment time to regenerate and flourish.

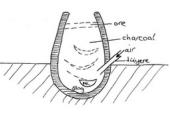


Fig 1. Iron-making experimental bowl furnace utilizing charcoal

As these communities depends their livelihood on smelting and production of metals, overexploitation of natural resources and ecological stress caused by it were taken very seriously.

In short, ancient metallurgy was not simply exploitative in nature, but also it was adaptive. Instead of exploitation and overmining, recycling was practiced, and this, in turn, helped in safeguarding the energy demands of the past society. They were keen on applying the principles of resource reuse and ecological awareness in their livelihood, which should be taken as an example in the present society.

Based on this understanding, the Department of Heritage Science and Technology and Materials Science and Metallurgical Engineering together are working on the project titled "Exploring ancient Indian panchadhatu and asthadhatu-making (high entropy alloys) with new compositions and combinations for modern age applications". Here, we are looking at the traditional Indian knowledge system of alloy making through archaeometallurgy and are trying to reimagine and reinterpret it as a prototype of the present-day high entropy alloys. Through experimenting with different compositions and combinations, this study aims to integrate past understanding of the technique of alloying with the contemporary advanced technologies, thereby creating a sustainable and futuristic methodology for the production and utilization of metals.

References:

Deshpande, P. P., Kathavate, V. S., Nath, N. K., & Shinde, V. S. (2023). Ancient iron-making process at Naikund, Vidarbha region of India: A thermochemical analysis of megalithic iron-smelting. Current Science, 125(12)

Kanungo, AK., Raviteja, Roy, Oishi, Singh, Jeevan. (2020). Understanding Ancient Zinc Technology: An Experimental Study. Man and Environment. Indian Society for Prehistoric and Quaternary Studies.

Hegde, K. T. (1991). An introduction to ancient Indian metallurgy.

Pigott, V. C. (1999). The Archaeometallurgy of the Asian Old World. UPenn Museum of Archaeology.

Suri, Anil. (2025). Environmental Ethics and Sustainable Practices in Traditional Indian Mining. Journal of Sanātana Dharma.

Tripathi, V. (1998). Archaeometallurgy in India.

[1] Ms Nayanathara S

Research Scholar,

Department of Heritage Science and Technology

[2] Prof Suhash Ranjan Dey

Department of MSME and HST